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Motivation--THz “Markets”
Space based  (NASA/ESA etc):

• Earth Science:  Atmosphere and how it changes, cloud 
dynamics, ozone depletion etc 

• Space Science:  Study galaxies far away, star formation, star 
decay etc

• Planetary Science: Planetary atmospheres and the search for 
volcanic and life signatures, active altitude control for landers etc

• Bioastrophysics: detection of bio-molecules, detection of 
habitability etc

Ground based/Commercial:

THz applications are expanding rapidly and commercial markets 
are developing:  imaging, homeland security etc 
To detect the THz energy that is everywhere we need:

THz heterodyne detectors
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THz Bands & Atmospheric Transmission

.5-2.5
THz

Submillimeter

Frequency/Wavelength

Erich Grossman’s
Airhead Software
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Spacecraft with THz on-board

Space-borne
SWAS—measurement of water
UARS-MLS—ozone monitoring
MIRO—rendezvous with a comet

Earth Orbiter/Sounder

High Altitude Balloon

Upcomming:
HIFI on Herschel Space Observatory—Early universe study
VESPER—Venus Discovery Mission
SIGNAL—Mars Scout Mission 
SAFIR—Astrophysics mission

Airborne Platform (DC8/SOFIA)

Planetary Sounder
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• Heterodyne receivers can easily attain extremely high
spectral resolution
> For Herschel R ≈ 106 and 107 (∆v ≈ 300 m/s and 30 m/s)
> FIR or submillimeter grating spectrographs for bolometer detectors

would have to be prohibitively large (l ~ Rλ)

• The signals from heterodyne receivers can be reproduced
many times and delayed electronically
> An extremely useful property when considering interferometers
> ESA considering a heterodyne THz space interferometer: ESPRIT
> Delay lines for FIR direct detection interferometers must be very

large and it is difficult to combine signals from many telescopes

Advantages of Heterodyne Receivers
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• High spectral resolution is necessary to separate
overlapping emission or absorption lines
> Spectral lines give us valuable information on the state of the gas
> Temperature, density, molecular make-up of the material, local

radiation environment, magnetic fields, … can be determined from
key spectral lines

> Often both emission and absorption occur along the line of sight,
so without detailed knowledge of line shape, errors in estimating
line strengths will result

Why High Spectral Resolution? 
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• High spectral resolution is necessary to obtain detailed
velocity information from emission and absorption lines
> Measuring the motions of gas during processes such as explosions, 

outflows, accretion,
etc. is a key ingredient in our understanding of these processes

> Velocity allows one to separate line emission & absorption from
spatially overlapping regions of the sky

•High spectral resolution allows detection of extremely
weak lines
> If spectral resolution of spectrograph is much less than the

intrinsic line width, then line is “diluted” => loss of sensitivity
> Large (pre-biotic) molecules have intrinsic line widths that are

extremely narrow and occur in dense, cold regions

• Large molecules can be uniquely identified through their
line signatures at THz frequencies

Why High Spectral Resolution? 
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High Frequency Heterodyne Functionality

Source Frequency fS Astronomical signal
from telescope

LO frequency

Common optics combine
LO and astronomical signal

Intermediate Frequency (IF)

Spectrometer

Mixer output Low Noise
= |fS-Nf0|

Oscillator at
frequency f0

Power
Amplifier

Multiplier
Nf0 IF Amplifier

Local Oscillator (LO)
LO
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High Frequency Heterodyne Functionality

Source Frequency fS Astronomical signal
from telescope

LO frequency

Common optics combine
LO and astronomical signal

Intermediate Frequency (IF)

Spectrometer

Mixer output Low Noise
= |fS-Nf0|

Oscillator at
frequency f0

Power
Amplifier

Multiplier
Nf0 IF Amplifier

Local Oscillator (LO)
LO



12
ESTC, June 27th,2006, Maryland, Imran Mehdi/JPL

Submillimeter-Wave  Mixer PerformanceSubmillimeterSubmillimeter--Wave  Mixer PerformanceWave  Mixer Performance
Schottky, SIS and HEB (Hot Electron Bolometers)
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2.5 THz MOMED Mixer/Receiver for EOS-MLS
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Two channel receiver for 2.5 THz flight application

Sponsors:
BSICT, Code Y

Work By:
M. Gaidis, H. Pickett, 
D. Harding, R. Tsang,
T. Crawford, P. Siegel

JPL 2.5 THz MOMED mixer chip in waveguide mount
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530-590 GHz Subharmonic biasable Mixer Chip

Extend this technology to 4.7 THz
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SIS Receivers for CAMEO Microwave Limb Sounder

• Niobium SIS junctions with aluminum nitride barriers
• 4.2 K operating temperature
• 180-280 GHz RF band
• 6-18 GHz IF band
• Input noise below 100 K SSB
• Fixed-tuned waveguide circuits
• Corrugated horn input
• Sidebands separated with quadrature hybrids

xN
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RF Input from 
the Antenna,
180-280 GHz

LO Power 
Divider

LO Source

IF Amplifiers, 
6-18 GHz

USB

LSB Psig
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IF Outputs to the 

Spectrometer, 
6-18 GHz
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Load
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Niobium SIS sideband separating Mixer

Nb/Al-AlNx/Nb SIS junction

LO Input Waveguide

Horn

Mixer Block 2
Mixer Block 1

DC Bias Circuit
USB Out

Magnet

DC Bias 
Connect
orSIS Mixer Device

LO Coupler

RF Hybrid

LO Power Splitter

Matched Load

RF probe

Input waveguide

IF and DC 
bias bond 
pads
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IF Passband
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1.5 THz HEB cross-bar balanced mixer
on Silicon-On-Insulator Substrates

HEB’s

Signal
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LO
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LO
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Signal
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for the Signal
Mode

Signal Horn
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NbN HEB SOI Device Process (Schematic)

Thick Si wafer

a) Film Growth

6 micron Si layer

4 nm NbN
c) Etch the NbN Layer

Thick Au

b) Pattern Wiring and Mask Layer
Thin Au SiO Mask

d) Remove Handle Wafer and Pattern SOI

Back side etching of the
silicon membranes –
the chips are stuck in wax.
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1.5 THz cross-bar balanced mixer hardware

Block with
LO and
Signal
Focusing
Mirrors

HEB’s

Signal
Probe

LO
Probe

Chip
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Chip Tack-
Bonded to
Block and
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External
View
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Tack
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LO WG
Signal
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Signal Horn
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Summary of various mixer technologies

Schottky Diodes:
Works up to many THz. 
Cooled or uncooled.
Noise 1700 K DSB @ 640 GHz
LO power 0.3-1 mW
Array applications in Atmospheric analysis, 
Security

SIS:
Noise 80 K @ 500 GHz.
LO power about 50 microW.
Numerous array applications in astronomy 
up to 1400 GHz.

HEB:
Works up to at least 5 THz.
Receiver noise @ 500 GHz: ≈ 600K.
LO power  1 microW
Applications in astrophysics.

(Caltech/JPL)
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THz Frequency Sources
Need:  Frequency coverage, frequency tuna-
bility, robustness, frequency stability, Non-
cryogenic functionality, spectral purity…

Schottky diode multipliers:
• Extremely small anodes
• Multiple anodes per chip
• Integrated with RF circuitry
• Testable
• Package-able

How to make THz diodes??



23
ESTC, June 27th,2006, Maryland, Imran Mehdi/JPL

Long, long ago…

Whisker contacted anode

Planar diodes needed for:
•Robustness
•Increased functionality
•Increased reliability
•Increased repeatability
•High power handling 
•Harmonic control
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JPL Planar Schottky diodes
 

• Based on a proprietary 
planarization process that allows for

• Self aligned anode and 
finger

• Dry etching
• No use of polyimide etc
• E-beam compatible for 

real small anodes
• T-gate like anodes
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Substrateless Technology

Remove substrate completely where 
not needed—substrate sculpturing

250 µm
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Devices beyond 1 THz
Solution: remove most of the GaAs 

substrate membrane devices

430 µm

• Membrane is 3 microns thick
• Extensive use of beam-leads
• Extremely simplified assembly
• Bias less design

1200 GHz tripler chip

Robust process—scalable
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x2x2 Chain to 300 GHz

150 GHz Doubler
• 6 anodes in balanced configuration
• 1017 cm-3

300 GHz Doubler
• 4 anodes in balanced configuration
• 1017 cm-3

0

2

4

6

8

10

280 285 290 295 300 305 310 315 320
Frequency (GHz)

O
ut

pu
t P

ow
er

 (m
W

)

0

10

20

30

40

50
140 145 150 155 160

Ef
fic

ie
nc

y 
%

 a
nd

 P
ow

er
 (m

W
)

P300 (mW)
P150 (mW)
Efficiency (%)



28
ESTC, June 27th,2006, Maryland, Imran Mehdi/JPL

x2x2x2 Chain to 800 GHz
800D ES2 10210022- X1 SN001

LF2 4e17, 1p0x1p1-STM4 ~15 um thick IV#2301
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• At 120K peak power of 2mW, 3dB BW of >6%
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1.4 – 1.6 THz Configuration
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State-of-the-art
1.1-1.9 THz Solid State Local Oscillators at 120 K
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Possibilities for THz LO Sources in Space
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Challenges going forward…

• Large pixel count focal plane arrays 
• Schottky based receivers above 2.5 THz
• Robust tunable sources in the THz range 
• Simple receiver architectures 
• Efficient distribution of LO power
• Bandwidth
• Programmatic: Cost sharing strategies
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Current & Proposed THz Heterodyne Progs. at JPL
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Security Applications for Submillimeter-Waves

Modes:
Passive detection.
Active illumination.
Chirped for scanning or ranging.

Applications:
Detection of hidden weapons or contraband.
Non-invasive inspection.
Spectroscopy of gases, aerosols or solids.

“Bob”

Passive 640 GHz heterodyne image of wrench hidden under shirt, with 10msec 
integration per pixel (scanned single pixel Schottky).
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Focal Plane Array using Waveguide Technology

Conceptual idea: Include most functionality directly into each channel, so that the design
can be replicated to a large array without system complications.

Waveguide design: Eliminates most RF and IF cross-talk between channels. High beam 
quality and polarization properties. LO injection does not require complicated optics. 
Easy boresighting on all channels.

Difficulties: Micromachining circuits above 1 THz. Uniform LO distribution.

Shown: Linear stackable array of 330 GHz Schottky Mixers - Triplers included into the block.

For SIS/HEB        : Added functionality (sideband separation) – “ultimate receiver” concept.
For THz HEB       : Fundamentally pumped. Cross-bar balanced mixers for LO injection. 
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THz Imaging for Biomedical Applications: NIH

DESCRIPTION:
Application of NASA developed THz heterodyne sensor 
technology to THz Imaging for space science and 
biotechnology (joint NASA/NIH program)

THz image of leaf

PRODUCT FUNCTION:
• Provides first ever THz images obtained by high spectral 

resolution, high sensitivity, ultra wide dynamic range 
heterodyne system. 

• Utilizes both magnitude and phase information to 
yield tomographic style images of 3D objects

• Simultaneously measures absorption and reflection
• Links NASA and NIH through bio-applications
• >1000 times the penetrating power of existing T-Ray 

imagers in bio and other material samples

THz image of a 
JPL ID badge 
showing embedded 
RF coil and 
transceiver chip for 
electronic access. 
The interference 
pattern is likely 
Newton rings do to 
badge curvature.

UNDERLYING TECHNOLOGIES:
THz semiconductor downconverters, far IR lasers/sources, 
new image construction and enhancement software

POTENTIAL USES:
Characterization of new and existing materials/structures 
Multipixel imaging for greater signal throughput
Contrast mechanisms in disease diagnosis/material defects THz image of DEOS far 

IR laser beam used to 
collect data above, before 
(left) and after (right) 
proper alignment by  Eric 
Mueller of DEOS.

CURRENT STATUS: 
Initial “proof of concept” direct detection system 

established to get familiar with issues & capabilities
Heterodyne system assembled and in early testing phase
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• High frequency (THz) heterodyne receivers are necessary
> To study origin of the basic materials of life in the star and planet

forming environment
> To understand the physical & chemical state and motions of interstellar 

material in nearby galaxies and the Milky Way
> “Pretty pictures” alone will not answer some of our most basic

questions 

• Future THz heterodyne receiver needs
>  Compact, low noise & power consumption, high power output LOs

(Goal: 5 THz )
>  Low noise mixers at higher frequencies in array format 

(Goal: arrays of 10’s)
>  Waveguide technology should enable compact focal plane arrays of 

Schottky, SIS and/or HEB mixers from a few hundred GHz to several THz
>  Future detector arrays will be determined by the detector type, LO power 

(& funding source!!)

Summary
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